931 research outputs found

    Molecular characterisation and epidemiological investigation of an outbreak of blaOXA-181 carbapenemaseproducing isolates of Klebsiella pneumoniae in South Africa

    Get PDF
    Background. Klebsiella pneumoniae is an opportunistic pathogen often associated with nosocomial  infections. A suspected outbreak of K. pneumoniae isolates, exhibiting reduced susceptibility to  carbapenem antibiotics, was detected during the month of May 2012 among patients admitted to a haematology unit of a tertiary academic hospital in Cape Town, South Africa (SA).Objectives. An investigation was done to determine possible epidemiological links between the case patients and to describe the mechanisms of carbapenem resistance of these bacterial isolates.Methods. Relevant demographic, clinical and laboratory information was extracted from hospital  records and an observational review of infection prevention and control practices in the affected unit was performed. Antimicrobial susceptibility testing including phenotypic testing and genotypic detection of the most commonly described carbapenemase genes was done. The phylogenetic relationship of all isolates containing the blaOXA-181 carbapenemase gene was determined by pulsed-field gel electrophoresis  (PFGE) and multilocus sequence typing.Results. Polymerase chain reaction analysis identified a total of seven blaOXA-181-positive,  carbapenem-resistant K. pneumoniae isolates obtained from seven patients, all from a single unit. These isolates were indistinguishable using PFGE analysis and belonged to sequence type ST-14. No other carbapenemase enzymes were detected.Conclusion. This is the first documented laboratory-confirmed outbreak of OXA-181-producing K.  pneumoniae in SA, and highlights the importance of enforcing strict adherence to infection control  procedures and the need for ongoing surveillance of antibiotic-resistant pathogens in local hospitals

    Translational Retinal Research and Therapies

    Get PDF
    The following review summarizes the state of the art in representative aspects of gene therapy/translational medicine and evolves from a symposium held at the School of Veterinary Medicine, University of Pennsylvania on November 16, 2017 honoring Dr. Gustavo Aguirre, recipient of ARVO's 2017 Proctor Medal. Focusing on the retina, speakers highlighted current work on moving therapies for inherited retinal degenerative diseases from the laboratory bench to the clinic

    Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    Get PDF
    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter γ\gamma, with an accuracy of two parts in 10710^7, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, GG and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table

    AAV2-Mediated Subretinal Gene Transfer of hIFN-α Attenuates Experimental Autoimmune Uveoretinitis in Mice

    Get PDF
    BACKGROUND: Recent reports show that gene therapy may provide a long-term, safe and effective intervention for human diseases. In this study, we investigated the effectiveness of adeno-associated virus 2 (AAV2) based human interferon-alpha (hIFN-α) gene therapy in experimental autoimmune uveoretinitis (EAU), a classic model for human uveitis. METHODOLOGY/PRINCIPAL FINDINGS: An AAV2 vector harboring the hIFN-α gene (AAV2.hIFN-α) was subretinally injected into B10RIII mice at two doses (1.5×10(6) vg, 1.5×10(8) vg). AAV2 vector encoding green fluorescent protein (AAV2.GFP) was used as a control (5×10(8) vg). The expression of hIFN-α in homogenized eyes and serum was detected by ELISA three weeks after injection. The biodistribution of vector DNA in the injected eyes, contralateral eyes and distant organs was determined by PCR. EAU was induced by immunization with IRBP(161-180) three weeks following vector injections, and evaluated clinically and pathologically. IRBP-specific proliferation and IL-17 expression of lymphocytes from the spleen and lymph nodes were assayed to test the influence of the subretinal delivery of AAV2.hIFN-α on the systemic immune response. hIFN-α was effectively expressed in the eyes from three weeks to three months following subretinal injection of AAV2.hIFN-α vector. DNA of AAV2.GFP was observed only in the injected eyes, but not in the distant organs or contralateral eyes. Subretinal injection of both doses significantly attenuated EAU activity clinically and histologically. For the lower dose, there was no difference concerning lymphocyte proliferation and IL-17 production among the AAV2.hIFN-α, AAV2.GFP and PBS injected mice. However, the higher dose of AAV2.hIFN-α significantly suppressed lymphocyte proliferation and IL-17 production. CONCLUSIONS/SIGNIFICANCE: Subretinal delivery of AAV2.hIFN-α lead to an effective expression within the eye for at least three months and significantly attenuated EAU activity. AAV2.hIFN-α was shown to inhibit the systemic IRBP-specific immune response

    Characterisation of a C1qtnf5 Ser163Arg knock-in mouse model of late-onset retinal macular degeneration.

    Get PDF
    A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD) in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse "knock-in" model carrying the Ser163Arg mutation in the orthologous murine C1qtnf5 gene by site-directed mutagenesis and homologous recombination into mouse embryonic stem cells. Biochemical, immunological, electron microscopic, fundus autofluorescence, electroretinography and laser photocoagulation analyses were used to characterise the mouse model. Heterozygous and homozygous knock-in mice showed no significant abnormality in any of the above measures at time points up to 2 years. This result contrasts with another C1qtnf5 Ser163Arg knock-in mouse which showed most of the features of L-ORMD but differed in genetic background and targeting construct

    In Vivo Binding and Retention of CD4-Specific DARPin 57.2 in Macaques

    Get PDF
    The recently described Designed Ankyrin Repeat Protein (DARPin) technology can produce highly selective ligands to a variety of biological targets at a low production cost.To investigate the in vivo use of DARPins for future application to novel anti-HIV strategies, we identified potent CD4-specific DARPins that recognize rhesus CD4 and followed the fate of intravenously injected CD4-specific DARPin 57.2 in rhesus macaques. The human CD4-specific DARPin 57.2 bound macaque CD4(+) cells and exhibited potent inhibitory activity against SIV infection in vitro. DARPin 57.2 or the control E3_5 DARPin was injected into rhesus macaques and the fate of cell-free and cell-bound CD4-specific DARPin was evaluated. DARPin-bound CD4(+) cells were detected in the peripheral blood as early as 30 minutes after the injection, decreasing within 6 hours and being almost undetectable within 24 hours. The amount of DARPin bound was dependent on the amount of DARPin injected. CD4-specific DARPin was also detected on CD4(+) cells in the lymph nodes within 30 minutes, which persisted with similar kinetics to blood. More extensive analysis using blood revealed that DARPin 57.2 bound to all CD4(+) cell types (T cells, monocytes, dendritic cells) in vivo and in vitro with the amount of binding directly proportional to the amount of CD4 on the cell surface. Cell-free DARPins were also detected in the plasma, but were rapidly cleared from circulation.We demonstrated that the CD4-specific DARPin can rapidly and selectively bind its target cells in vivo, warranting further studies on possible clinical use of the DARPin technology
    corecore